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Averaged equations of the kinetic energy balance of particle rotational motion 
and entropy are obtained on the basis of statistical methods developed in 
[ 1 ,  2]. 

Most universal for systems with a large number of degrees of freedom in an abbreviated 
description is the conception of statistical ensembles when a detailed picture of the be- 
havior at the level of individual structures is not required and it is sufficient to know the 
evolution of certain average characteristics. Ensemble averaging can be used for suspensions 
of solid spherical particles if the space and time scales of the processes to be modeled are 
substantially greater than the dimensions of the individual particle and its relaxation time, 
respectively. 

In the general case the distribution function of a statistical ensemble of states of a 
suspension depends on the coordinates of the centers of mass of all the particles and all 
their possible-derivatives with respect to time, and is subject to the continulty equation 
in the phase space of these variables [3]. The number of components to which we should limit 
ourselves in the continuity equation will depend on the specific form of the equation of mo- 
tion of an individual particle. For inertiafree motion, when the forces applied to a parti- 
cle are equilibrated by a force acting from the fluid, the distribution function will depend 
only on the coordinates of the particle centers of mass [3]. Such an ensemble of possible 
spatial particle configurations is used in [i, 2]. Both phases are considered within the 
framework of the mechanics of continuous media. "Spreading" the properties of discrete 
particles over the volume of the whole system is realized by using a certain generalized 
function that equals one within the particle and zero in the fluid. In deducing the con- 
tinual balance equations it is convenient to use the matrix form of writing the statistical 
averaging operator, which permits formal examination of a two-phase mixture as slngle-phased 
[4]. 

Statistical averaging of the balance equations of different kinds of energy, as well as 
the entropy of monodisperse suspensions of spherical particles, was examined in [4, 5], with- 
out taking account of their rotation and diffusion and chemical reaction processes within the 
phases. The balance equations are averaged in this paper with the effects noted above taken 
into account. 

The kinetic energy balance of a continuum has the form [4] 

' 2 (1) 

Using the relationships obtained in [i], we extract the kinetic energy of particlerotational 
motion in this equation. The mean of the local physical quantity G(t, TI C~N~) (velocity, en- 
ergy, etc.), dependent on the hydrodynamic ~ and phase <G>§ variables, is expressed for the 
solid phase in the form of integrals of the conditional mean~ 

< 0 > (2) 
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- '9- 
Using the known kinematic relationship G - ~ = ~, + ~ x x, by using (2) the mean velocity 
of the solid phase and the mean angular velocity of the particles can be found: 

va= <W:)  r +<~>7X dx=<Wl>7,  
4zca 3 J 

3 C (4) 
4xa 8 J 

The fluctuating velocity components are connected by the relationship 

~, =V,: + ;  x ; ' +  fi' x ,,:. (5) 
By using (2)-(5) the components in the left side of (i) are converted to the form 

e~'.~' > = ~ ,~(t, 5 ~ < ~'.~'> ~e;= ~ . . . .  : I--- ~ ~ �9 2" P,< 2 -~-P~vg:< Wt .Wt >+--~---n(t, 7)Yo~-+ 2 (t, r)Y (~ '  ~'>7, 

i l - ~ ,  1 . . . . .  (6) 
2.. p,< o,P'(P'.P')> = Tokyo, < w:(~';. ~ ' ; ) > 7 + T n ( t ,  7)Y <~;(fi'.fi')>z+,~(t,,.)},'<wtp.'>7.~, 

8 
where Y = - - ~ P x a  5 is the moment of particle inertia. Transforming the r i g h t  side with 

15 
(2)-(4) taken into account, and also the expressions for the surface and external force mo- 

ments ~(e), ~(F) and the Interphasal, interaction force ~: 

7Y' = n (t, :) a • (n. < = > Z) aa, 7Y ~ = n (t, ~ ] < A ~> > Z dx, 

we finally obtain 

at p~,,PI < II?: > ~ 2-P,vP: < W, �9 W~ > 7 2 

........ n (t, 3 r < > 7) + ~. P,,,P1 < ~'i > < ~, > r + 
2 ' L 2  ' 

, - ,  y < >;.  < >-._,_ . . . . . .  
+~--p~px<W;.W, >7<WI>7+ l nY(o~<~,)7 _[_ 2 r 2 2 PuP~ < W, (W, .W,) 

+ " r < r  > ; ' ; + ~ , , V <  W;(s = ---G:(O~,*, < ~'; ~; >7+o'")<~',>;'I+7"<q>':+ 

+ < .~. ~;  > ;  - # " , . ;  + < ;~ ' " .  5' > ;  + 7. ,',. ; -  ,,~p, < ~1 > z-7~n~ - p, < o ;~ : .  v~; > 7. 

Expressions for the effective stress fluctuations were taken into account in the derivation 
of (8) [l]: 

of = P1 < olP, ~, > =01 < e1~ ~, > +o(~,, (9) 

o,~, = - - - h  i F .  (t, ~ [ ~  + < 5 '5 '  > ;  - (~ + < n' > :) ~;. (~o) 
2 

To derive the transport equation for the kinetic energy of particle rotational motion, we 
consider the rotational energy balance of an individual particle 

dt 2 

Taking the average of (ll) term by term with (2) and (7) taken into account, we arrive at 
the d e s i r e d  equa t ion  

+ 

~ . r<a ' .a '>:)+~.[1 . fo ;<q>:+  nY~ + T 2 

l n y ( 5 , . ~ , ) 7 < l ~ , > r _ t _ n y ( ~ / ; ~ ,  > .--~+ 
2 (12) 
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+ ~ ~r<~;(fi,.fi')> 
2 

Subtracting (12) term by term from (8) 
energy of the disperse phase 

+ ~-,o~, < ~; # ; .  

= _ i  (~). ~__ ( i1~ ' .5> +~(*). ~. 7 

, we obtain the balance equation for the translational 

[+ 
pT;) }TJ = -T~.i(p~p,< ~;~i >r + 

+o,,)).<~7,>~+ <F.~; >r-p~o,<~,>r.~n, ~,<o,~;.~n; >r. 
(13) 

By using (6) and (7) the kinetic energy of particle rotation is easily extracted from the 
equations of fluctuating motion [4] 

o-7 T f)~P~ < ~ ' ~ I  r +  ~ + ~ nr  < 5'.~'  > r,  

2 2 

2 ~~ ~r" < ~; (fi'.fi') > 7-] = -- D,~v~ < w, ~'; > r -  T 

+ < ? . ~ ;  > :_<i ( , , , .~ ,  >r_p~<o,~i.~n ~ >7. (14) 

It is seen from this equation that the kinetic energy of rotational solid phase motion is 
of the same order of magnitude as the fluctuating kinetic energy of translational particle 
motion. Subtracting the equation for the balance of the averaged kinetic energy of particle 

rotation nY D ~2 =--~(F). ~+ ~(e).~, term by term from (12), we obtain the balance equation 
Dt 2 

for the fluctuating kinetic energy of rotational motion 

l 

Ot 
-~ I nr  < ~;  (~'.~'} > r ]  = - < iC~' "~' > r .  (15) 

Finally, subtracting (12) from (14), the kinetic energy of the translational motion fluctua- 
tions of the disperse phase can be found. The influence of particle rotational motion on 
the behavior of the disperse system is also examined in [6]. 

Taking the average of the microscopic entropy balance equation [7] yields 
(16) 

/Oa\ "dr/ds\ _-- < OV. J~ ) + < 0(~, > , ~ (ps) + V.  (psV + p < Os'V' > ) = - -  av. Sp(O~) + (a - -  b) { O~.~s ) +0o,, 

where 0o~ can be represented in the form 0os=aSp(0us)+ (b--a)<O1os>. Derivation of the spe- 
cific mode of the entropy balance equation is based on the fundamental Gibbs equation [7] and 
the microscopic mass and internal energy balance equations at the phase level. Taking the 
average of the mass balance equation by using (2) results in the expression 

.0 (Pck) + V .  (pcaV) = av. Sp(OJa)--V.(p < Oct," > ) + (a --b)ma-{- Oolm) (17) 
Ot 

where m k = n(t, ~) n.<Jk>~da is the flux of substance on the surface of the trial particle. 

Taking (17) into account, taking the average of the Gibbs equation yields 

OpT d s , ~  =- __ < O~.[r_i(y  q _ Z p , ~ ) ]  ) + < O~q.~r_ ~ ) _ <  O~Tk.~(l~r-i)>__~or-/ :~( , , .~ )_< S ~  r-'lXh,k'm)). 
dt / h k k (18) 

Using the approximate equality IT -i = (T + IT') -t -----T-i--0(T'T-2), we extract the fluctuating com- 
ponents in the averaging operators. It is convenient to represent components of the form 
<| thus 

< OFV6> = < F'v(OG)>-- < F6vO > = f[~(0g) + (b---a) < GV0o)]+ < OF'vG).  (19) 
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"+" + ~S(i)  § § 
Setting F - Jq, Jk, ; V G = ~T, V(~kT-~), ~ in (19), and caking account of the symmetry 
of the. viscous pressure tensor, we obtain an expression for the entropy production.( (~(i~> 

= Z . > ,  ( ~co > = .to)) o~ a. = O~s = - -  qT -2 [v(0T) -k (b - -a)  ( TVOo ) I - + Z  Jh [V (0~h T-~) § 
k 

q- (b - -  a) T -t < ~.vOo ) l - -  o<~ : IV (OV) -4- (b - -  a) ( V(VOo ) > ] 
(20) 

- -  Z 0 ' I ' - i  itl,kff~ m ) -  ( os+r-,'~r > - ~ < o J ;  +(t+~v-') > -  < o 7 - ' z  ''>' : ~ v  > - ~ < Or+'t+k.~m' >. 
h /+ /r 

By using (2) we convert the divergence of the entropy flux determined b y  the first component 
in the right side of (18): 

~.-)~u + + " ~,' -+ + , 
�9 Sp ( 0  +) -r  s = -- ( OV" [ T-I (Jq-- X~ ~kJ+)l > = - - a v  

k 

-+-(a--b> (@xV.Js>  = a v [ S p 0 T - *  (q'--~Ia~+~'h) -+- ( O T - t ( - ) ~ , - - Z p ~ " ) ; + ) >  ] + ( b ~ a ) Q + ,  (21)  
k 

where ++=<+,+.7+> 7)SL ++++>>+e-a desc++bes the int,r+hasal entropy 

e x c h a n g e .  

I f  (20)  and (21)  a r e  s u b s t i t u t e d  i n t o  ( 1 6 ) ,  t h e n  i t  w i l l  a g r e e  f o r m a l l y  w i t h  t h e  e n -  
t r o p y  balance equation for a single-phase medium 

d + -~- (ps) ~-V.(psV -~ p ( Os'V' > ) = --V. 7P" + ,~f'. (22) 

In principle, the fluctuation components Uk, can be extracted in (20) and (21) and higher 

order infinitesimals in powers of TT -I can be retained. However, this is not required for 

our purposes. Ne note that an alternative form of the expressions for o~ ff and ~ff is pre- 
sented in [5]~ but without the diffusion and chemical components. To obtain phenomenologi- 

cal laws, (20) is more convenient than o~ ff in [5]. 

Taking account of the complexity of the behavior of a disperse system, it is interescing 
to examine first the processes of pure heat conduction, viscous friction, and diffusion (with- 
out cross effects). As usual [7], the relationship between the fluxes and the generalized 
forces is assumed linear, and we can write for the heat conductlvi~y in conformity with the 
firsc term in (20) 

0q = -- LqT -2 [v(0T) + (b -- a) ( TVO0 ) ]. (23) 

Rewriting (23) in terms of phases, we obtain the heat-conduction equations 

e qo=--~ogV (eTo) -~ ~oq ( Ta+oVOo ) , (24)  

w h e r e  a + 0 ,  a --  0 d e n o t e  t h e  p a r t i c l e  and t h e  f l u i d ,  r e s p e c t i v e l y .  Adding  (24)  and (25)  
and taking account of the properties of che averaging operations we obtain an expression for 
the mean heat flux with respec~ to che phases 

where ~ = eTo + ONTx and <OxvT> can be represented, in conformity with (2), in the form of 
an integral over the surface of the trial particle. 

The representation of the entropy production in the form (20) is convenient in chat the 
linear phenomenological laws (24)-(26) for the mean heat fluxes in the phases and for the 
mixture obtained on the basis of (20) will agree with the results of taking the average of 

the local heat conductivity law which is valid st the level of the individual phases ~q = 

--AqVT. 

Let us examine the effec~ of viscous friction in the suspension. The molecular viscosity 
appears only in the liquid phase. The particles yield a contribution to the viscous stresses 
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in terms of the perturbations of the flux velocity field. The tensor of the molecular vis- 
cous pressures is antisymmetric when fluid particle rotation exists at the molecular level 
[7]. Rotation of the solid particles of the suspension is a supermolecular effect which 
does not yield a direct contribution to the energy dissipationt nor therefore, to the en- 
tropy production. Consequently~ the irreversible part of the pressure tensor is a symmetric 
viscous tensor and we can write on the basis of (20) 

0o <~) = - -  L~T [~s (0V) -t- (b - -a)  < VTO0 > ]. (27)  

Since the normal velocity component on the particle surface is continuousm then <oo~s~> ,, 

-- = �9 (r + PNVz) and by calculatlng the trace in (27) we obtain 

0 "->S 

o(~1 = ~,6 ~ + p~o~~ = - 2,1oV (~;o + P N ~ ) .  ( 2 s )  

This same result can be obtained by taking the average of the local viscous pressure tensor 
[i]. The remaining tensor components -=<~> ~ related to the thermodynamic pressure and 
the mean with respect to the solid phase <~)~>, are calculated in [i]. Let us note that 
the work of the deformation associated with therotational component o ~2) of the pressure 
tensor can go into the change in energy of the translational motion of the continuous phase 
or be dissipated by means of viscous frlctlon. In the absence of an external pair~ the pres- 
sure tensor is symmetric [i]. 

Let us examine the simplest case of one-component diffusion in the liquid phase of a 
�9 .+ 

suspension at constant temperature and pressure. Taking into account that Jm-------L~V~---- 

--c,~( a ~ /  ~ = - - D ~ c  t6] and r,placing the che=ical potential, by the concentration for- 
\ Oc )r,p 

mally in (20), we can writej 

OJm =--D[v(0c)-i- (b--a) < cveo ) 1, (29) 
and the effective diffusion flux in the mixture can now be represented in the form 

7,,=~,. +p~,,  = Do ~(~o + p~) + (Do-- JD,) < e~ ~ >. (30) 
.),. ..>. 

This same expression can be obtained by taking the average of the local Fick law Jm " --DVc. 
If diffusion in the solid phase (Dz = 0) is neglected and taking the average over the con- 
dltlonal distribution function (2) is usedm then it follows from (30) that 

J'm=--Do~ (eco "Jr P3vca) -I- Don (t, 7") [ "n ( c ) 7da, 
from which it is seen that the presence of the solid p~ase can influence diffusion purely 
geometrlcally~ flrstly, because of dls~ortion of the vector lines of flux ~ms and secondly, 
because of chemical processes on the particle surfacep i.e.~ in terms of the condltlonal 
mean concantragion <c>~. 

Let us determine the energy dissipation due to the work of the viscous stresses~ for 

which we take the average of the local dissipative function ~s=_~0:VVV -*~ with respect to 
the phases : dt 

ve,~o ~ - < OoZ ('~ : vV > = - ( ~ o ( o  ~ : v Oo + o,,o~ ~ :voO + T.~o + (.31) 
+ < o,~.(~,',.~)>- < ~:':~3" > -  <o~P.~.:~(" >, 

(32) 
~ ,  = _7. ~,~_ < o~.(~("~ ') > + < o~P. ~.~(" >. 

Summing (31) and (32), we find 
(33) 

dis \ '=  ~'DO+ WDI =--('0'0607 : V"~0-~" PNllr[ r') :VIJl ''~'-+) + 7" (~O--~l) - ( ~(i)' : ~ t  > . Wo= (T dt / 
In a particular case this expression yields the results in [8]. We convert the firs~ term 
in (33) as follows: 

~o'~~ v~-~,o + .~.,.,~ - '~ ---. v ,,,' = (~,,6 ~ + ~,~,,,~~ Wo + ~,,,,,~~ : ~" ( ~ - ~ ) .  = (34) 
=,,'~ :(v v0)+,~.vtal' (~-;0)]-~,.(~,~~176 

If we limit ourselves to small Reynolds numbers, as in [8]~ and consider ~he flux of the 
suspension to be steady~ then in conformigy with [1] 
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�9 = ( ~ - - ~ o )  V~V; v = ~Vo + ~ �9 ( 3 5 )  

Taking account of (34) and (35), and the expression for the interphaeal interaction force 

= G(~, -- ~o) (34), then (33) is converted to the form 

wo + < z(')" : vv '  >. (36) 

Approximating (36) by the expression W D = WD + B(;o --;,)V~o + G(;o --;,)=, where WD is 
the viscous dissipation in the liquid phase, we obtain the result in [8]. 

In principle, different cross effects can also be examined on the basis of the expres- 
sion (20) for the entropy production. I~ is seen from the a~alysis presented that it is pos- 
sible to take the average of local phenomenological laws which are valid at =he phase level 
when solving practical problems, The expressions obtained as a result of taking the average 
correspond to linear relationships for the average fluxes and forces obtained by using (20). 

Analysis of the fluctuating fields and the transport processes therin is a separate in- 
dependent problem. 

NOTATION 

r, x, radius-vector and Cartesian coordinate; t, time; a, particle radius; Y, particle 
moment of inertia; p, density; T, temperature; s, entropy; Bk, Ck, chemical potential and 
concentration of the k-component; ~, PN, porosity and volume concentration of the particles, 

n(r, t), mean numerical particle concentration; ~ = ~0o + PNP~, disperse phase density; 

G(t, ~[cN), g, a local physical quantity and its mean value; C N, a 3N-dimensional space of 

vectors ~(i); ~, ,, local pressure tensor and its mean value; Z ~), u,~, , local viscous pres- 
sure tensor and its mean value; Z (e~ , reversible part of the pressure tensor; ~*, effective 

fluctuating stress of the phase; ~, potential energy; f, mean interphasal interaction force; 

V, v, local velocity and its mean value; ~, ~, local angular velocity and its mean value; W, 

translational motion velocity; eL =~,(a--l~--~(i)[), a generalized coordinate; @o = 1 -- 0~; 
i 

~H, Heaviside function; o~m), bulk mass source; us, entropy production; q, Jq, heat flux; 

Jk, Js, diffusion flux and entropy flux; L, phenomenological coefficients; Xq, heat-conduc- 
o 

tion coefficient; n, coefficient of dynamic viscosity; D, diffusion coefficient; Aq = OoAoq + 
@,X,q, generalized heat-conduction function. Subscripts: 0, i, continuous medium and parti- 
cle respectively; <...>, statistical average; eff, effective value; the prime denotes the 
fluctuating components of the quantities. The matrices introduced in [3, 4] are: 

g =  ; g ~ c h ,  ~h, s, T, ~ ) ;  us, ~(v~; Jh, Js; L q =  

o 

Loq 0 ~ ~~176 _o  ; Lv ~ 0 ; D =  ; a =  
0 L1q 0 ~lqTl" 2~tT, , 0 D~] 

(, o) (oo> (, o) o t 
= 0 0 ; b :  0 1 ; 1 =  0 1 ; < 0 >  = 0 =  0 PN 

LITERATURE CITED 

i. Yu. A. Buevich and I. N. Shchelchkova, "Continual mechanics of monodispersed suspen- 
sions. Conservation equations," Preprint. Inst. Probl. Mekh. Akad. Nauk SSSR, No. 72, 
Moscow (1976). 

2. Yu. A. Buevich and I. N. Shchelchkova, "Flow of dense suspensions," Prog. Aerospace 
Sci., 18, No. 2-A, 121-150 (1978). 

3. A.A. Vlasov, Statistical Distribution Functions [in Russian], Nauka, Moscow (1966). 
4. G.P. Yasnikov, "Equations of the mechanical energy of monodispersed suspensions," 

Inzh.-Fiz. Zh~, 37, No. 4, 641-648 (1979). 
5. G. Po Yasnikov, "Nonequilibrium thermodynamics of monodispersed suspensions," Inzh.- 

Fiz. Zh., 38, No. 1, 78-84 (1980). 

4 4 3  



6. M.A. GolVdshtik and B. N. Kozlov, "Elementary theory of concentrated suspensions," Zh. 
Prikl. Mekh. Tekh. Fiz., No. 4, 67-77 (1973). 

7. S. DeGroot and P. Mazur, Non-equilibrium Thermodynamics, Elsevler (1962). 
8. N. Oshima, "On unsteady particle motion in flowing fluid," J. Faculty Engine Univ. 

Tokya, 26, No. 3, 147-216 (1963). 

PERIODIC MODES IN AN ISOTHERMAL TUBULAR REACTOR 

B. Lakatos, D. Blickle, 
D. Elenkov, and Ts. Sapundzhiev 

UDC 66.023/.025 

Nonstationary periodic conditions in an isothermal tubular reactor are considered. 
A study is made of the effects of the amplitude, frequency, and waveform of the 
input concentration signals on the average throughput. 

A reactor with nonlinear kinetics is often better operated in nonstationary cyclic mode 
than in a stationary one. This was first pointed out in [i, 2], and then in [3] variational 
methods were used to formulate the optimization conditions. Since then, there have been very 
extensive studies on periodic modes of various types: for example, in [4] a study was made 
of the quasistationary state, while in [5] positive feedback was considered, in [6, 7] the 
study concerned systems was distributed parameters, in [8] periodic relaxation oscillations 
were examined, and [9] dealt with adiabatic reactors. In [10], very effective estimates were 
obtained by means of the ~ criterion, while in [11] differential inequalities were used for 
slmilar purposes. The results and problems in this area have been surveyed in [12, 13]. 

The publlshed data relate primarily to completely mixed systems, or sometimes to models 
for ideal displacement, but very little is known about models characterizing intermediate 
mixing states. Here we may mention [7], in which an axial dispersion model was used to 
examine isothermal tubular reactors for the case of a second-order reaction, but only for a 
sinusoidal input signal and for parameters varying over a very narrow range. 

Here we present some more general results for isothermal reactors, which can be de- 
scribed by means of an axial dispersion model. We consider irreversible reactions of order 
n and give data for limiting cases of mixing. Also, the results obtained previously for 
second-order reactions are extended to the effects of the frequency of the periodic input 
signals on the throughput, and we discuss the determination of the optimum period for sinu- 
soidal inputs. The calculations were performed with an analog computer using perturbation 
methods. 

Formulation. Consider an isothermal tubular reactor in which there is an irreversible 
reaction of order n, which is described mathematically by an axial dispersion model: 

Oc(x, t) =Lnc(x, t), xE(O, 1), t>O;  (1) 
Ot 

(la) L~= I 0,(.) o(.) ~(.). 
Pe Ox 2 Ox 

with the boundary conditions 

c(x, t) 1 Oc(x,t) =u(t),  x=O, t>O;  (2a) 
Pe Ox 

Oc(x, t) - -0 ,  x =  1, t > O ,  (2b) 
Ox 
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